Get the most out of fully automated water samplers

Tuesday 15th March 2022, 3.30pm – 4.15pm AEDT

GoToWebinar interface

Presenters

Gustavo Queiroz Industry Manager

Preeth John Product Manager

Agenda

- What and why sampling?
- Typical sampling applications
- Challenges in manual sampling
- Introduction to autosamplers
- Challenges in autosampler operations
- Benefits of E+H Autosamplers
- **Q**&A

What is sampling?

- Sampling is the first step of a lab or handheld analysis
- Major role in the consistency and accuracy of results

Standards and Guidelines

- Australian and New Zealand water quality standards (AS/NZS 5667 series)
- Standard Methods for the Examination of Water and Wastewater
- Queensland's Water monitoring and sampling manual
- ISO 5667
- DIN EN 25667
- DIN 4045 Terms for Wastewater (1985)
- DIN 38402
 - DIN 38402-11:
- NEN 6600
- ÖNORM
- Mcerts/E32

European standard (1991)

International standard (First Edition 1980)

- German standard (1985)
- (new 2007-03)
 - Netherlands standard
 - Austrian standard
 - UK standard

Why is sampling required?

Compliance with standards and regulations

- Standardisation of analysis and procedures
- GLP (Good laboratory practices)

Process instrumentation limitations

- Technology
- Return of investment for multiple online measurements

Analysis complexity

- Sample preparation and conditioning (e.g BOD5)
- Microbiological analysis (human interpretation)

Typical applications

- Evaluation of water quality for discharge permits
- Monitoring of water bodies (e.g rivers, dams)
- Process monitoring
 - Water / wastewater treatment efficiency
 - Identification of product loss
 - Anomalies detection
- Outbreak detection (e.g. COVID-19)

Endress+Hauser Applicator

Challenges in manual sampling

Challenges in manual sampling

Safety

- Working close to water bodies
- Exposure to chemicals and biological hazards

Quality

- Risk of sampling nonconformities
 - Contamination
 - Not enough volume
 - Sample mixing
- Unstable variables (e.g free chlorine, pH, temperature)

Costs

- High wages
- Logistics time
- Personnel training

Manual sampling costs - Example

Scenario 1 – Grab sample

- **Cost per hour:** \$ 35
- Sampling time: 3 minutes
- Logistics time: 10 minutes
- Number of samples per day: 5

Yearly costs: **\$ 13,838.60**

 Scenario 2 – Composite sample

- **Cost per hour:** \$ 35
- Sampling time: 3 minutes
- Logistics time: 10 minutes
- Number of samples per day: 24

Yearly costs: **\$ 55,358.33**

POLL – In your opinion, what is the main challenge in manual sampling?

Introduction to autosamplers

Stationary Samplers – with Pump

Stationary Samplers – with In-Line Assembly

Portable Samplers – with Pump

Operation Modes

An example of a system with Flow rate vs Time

Time Dependent:

Equal time intervals, constant sample volume

Volume Dependent:

Variable time intervals, constant sample volume

Flow Rate Dependent:

Equal time intervals, variable sample volume

Operation Modes

Event Controlled:

- Alarm samples: The Sample is taken as soon as a certain value (eg: flow rate) is exceeded
- This mode makes monitoring and sampling possible with a single instrument only

Unique bottle Configurations

24x1 L

6x3 L + 1x20 L 5 6 3 4 7

2

1

12x1 L + 6x3 L

Endress+Hauser 🖽

Slide 21 03/15/2022 E+H Australia

Autosampler Summary

POLL – What is the aim of sampling in your process?

Challenges in autosampler operations

Challenges in Autosampler Operations

How do I measure unstable variables? e.g pH, temperature, dissolved oxygen, etc.

How do I know if my autosampler is fully operational?

How to plan the maintenance of my autosampler?

Memosens Technology

Inductive data transmission

Inductive energy transmission

- Inductive coupling between cable and sensor, no open contacts Criticality of analogue systems is totally gone!
- Bidirectional data transmission between sensor and transmitter Transfer of energy to the sensor head by inductive principle
- Calibration data are stored in the sensor head directly, therefore allowing calibration in the laboratory
- While operating, the sensor stores a numerous amount of different operational data in the sensor head for assessment and evaluation

Challenges in Autosampler Operations

How do I measure unstable variables? e.g pH, temperature, dissolved oxygen, etc.

How do I know if my autosampler is fully operational?

How to plan the maintenance of my autosampler?

Heartbeat Technology

Heartbeat Verification for liquid analysis

 > Heartbeat > Perform verification > Verification results > Verification reports 	OK	
	0)

- One-click generation of verification reports in pdf
- Overview of passed/failed results
- Details of transmitter & sensor checks

nearbeat vernication n	Heartbeat vernication	People for Process Automation		
Verification Report Analytical Measu	Verification Report Analytical Me	Verification Report Analytical Measuring Device		
Plant Operator:		Sensor Information Channel 4		
	Module Information	Channel	2:2	
Device Information	Backplane 2 with CPU	Serial number	R70DC605E00	
Installation location	BASE2	Order code	CP511D-7BA21	
Tag name	BASE2-E	Last calibration	14.10.2020 / 09:10:00	
Product family	Display module	Total operating time	536.50 h	
Order code	2DS	Heartbeat status	0	
Original order code extended	AOR	Sensor health	86 %	
Current order code extended		Next maintenance	deactivated	
Serial number	Device	Maintenance interval	deactivated	
Firmware version	Device	Heartbeat operation:		
	Heartbeat status	Availability	99.4 %	
Verification Information	Device health	Operating time	53-22 DD-hh	
vernication mornation	Rearbeat operation:	Time in failure	7:23 hh:mm	
Total operating time*	Availability	Number of failures	48	
Date/time of device	Operating time Time in failure	Mean time between failures (MTBF)	1-02 DD-hh	
Verification ID	Number of failures	Mean time to repair (MTTR)	0:09 hh:mm	
	Mean time between failures (MTBF)	Number of calibrations	0.00 m.mm	
Verification Results	Mean time to repair (MTTR)	Mean time between calibrations (MTBC)	53-22 DD-bb	
Overall result*		mean time between calibrations (in rocy	55 EE 60 mil	
*Overall result: Result of the complete device check performed with Heat	Detailed Verification Results			
	Power supply check			
Commont	CPU temperature check			
comment	Status signal			
	Analog output 1:1			
	Analog output 1:2			
	Analog output 3:1			
	Analog output 3:2			
	_			
Date Operator's signature	_			

How to run a Verification?

DeviceCare & Field Xpert

Application example for the web browser

Remote measurement values via a standard WiFi/WLAN router

Maintaining as easy as ABC

Quick maintenance for both pump systems without any tools

Youtube Videos – Comissioning, maintenance and more!

Commissioning of the Liquistation CSF48 Vacuum System - 3 - Setup of the
Program
1.3K views * 2 years ago
C Endress+Hauser
This video shows how to perform a commissioning of the Liquistation CSF48 vacuum system. The settings of the sampler will be ...

Maintenance of Liquistation CSF48 samplers with vacuum system 723 views • 7 months ago

Endress+Hauser

This video shows how easy it is to perform the maintenance of Liquistation CSF48 with vacuum system. Maintenance of ...

Application examples

Sampling application: Municipal WWTP (Germany) Sampling point: Inlet channel after screen

Application summary

- Sampling routine program activated with binary impulse
- Sampling Program: Advanced, 1x routine + 1x event
 Sampling interval: 50m³, > 2mS/cm
 Bottle change mode: 2h routine program
 Setup: 12x 1 liter + 1x 20 liter
 Sampling volume: 40ml, event programs multiplier 2x

conductivity inlet value by road deiceing (delay of sewer transport time)

Sampling application: Industrial WWTP Sampling point: Inlet channel after screen

Application summary

- Sampling routine program activated by time
- Sampling Program: Basic, 1x routine
 Sampling interval: 15 minutes
 Setup: 1x 30 liter
 Sampling volume: 100ml

Composite sample bottle

Sampling application: Industrial WWTP Sampling point: Effluent channel to sea

Application summary

Sampling routine program activated by flow pulses

Sampling Program: Basic, 1x routine
 Sampling interval: 50 m³
 Setup: 4x 13 liter
 Sampling volume: 50ml
 Bottle change: 24 h

Sampling application: Municipal WWTP Sampling point: WWTP Inlet

COVID-19 Outbreak monitoring

Sampling Program: Basic, 1x routine
 Sampling interval: 15 minutes
 Setup: 1x 30 liter
 Sampling volume: 100ml

Benefits of E+H Autosamplers

- Safety
 - Reduction of human exposure to hazardous conditions and environments
 - No contact with samples
- Cost Savings
 - Reduce multiple sampling to one simple bottle replacement a day*
 - No re-sampling
- Quality
 - Real-time measurement of unstable variables
 - High reproducibility
 - Event-triggered operation
 - Data logging Events, samplings

Questions?

